Investigating the Possible Association of Virus with Orocutaneous Lesions in Brown Bullhead

Submitted to Sean Rafferty, Pennsylvania Sea Grant

Submitted by Luke R. Iwanowicz and Deborah D. Iwanowicz Fish Health Branch Leetown Science Center, Kearneysville, WV 25430

Introduction

The observation of tumors in brown bullheads is currently used as a 'Beneficial Use Impairment (BUI)' in Great Lakes Areas of Concern. An increased incidence of hepatic neoplasms is associated with polyaromatic hydrocarbons (PAHs) and other contaminant exposure in this species (Harshbarger and Clark 1990; Baumann and Harshbarger 1995; Blazer et al 2009b). Likewise skin tumors, including papillomas and squamous cell carcinomas have been used as indicators of chemical exposure in bullhead and other species (Grizzle et al. 1981; Smith et al. 1989; Black and Baumann 1991; Pinkney et al. 2001; Blazer et al 2009a). Although no cause-and-effect correlations have been established for wild populations, papillomas have been experimentally induced in brown bullhead by repeated dosing of the skin with sediment extracts that contained high levels of PAHs (Black et al. 1985). Based on the syntax of this BUI definition there is no distinction between liver tumors and skin tumors. This BUI designation is based on the assumption that contaminant exposure is the sole inducer of tumors in this species. While aryl hydrocarbon receptor ligands such as PAHs have been identified in locations such as Presque Isle Bay of Lake Erie, the association between these ligands and skin tumors is weak (Gray et al. 2003; Rafferty et al. 2009). Additionally, in locations outside the Great Lakes the correlation between the prevalence of liver and skin tumors is spurious as well (Pinkney et al. 2001; Pinkney et al. 2012).

While there is considerable evidence that contaminants are associated with skin tumors in the brown bullhead, biotic factors including viruses are known to induce tumors in mammals and lower vertebrates. Approximately 15-20% of cancers in humans are associated with viruses (McLaughlin-Drubin and Munger

2008). Representatives of such viruses include members of the families Adenoviridae, Circoviridae, Flaviviridae, Herpesviridae, Hepadnaviridae, Pappilomaviridae, Polyomaviridae and Retroviridae. Viruses of the Herpesviridae and *Retroviridae* are associated with skin tumors in fish (reviewed in Getchell et al. 1998). Of note, the possibility of a viral etiology for orocutaneous tumors in bullheads has been investigated previously. Edwards and Samsonoff (1977) reported the presence of intracytoplasmic, virus-like particles via electron microscopic examination of a bullhead papilloma; however, this observation has not been reported since that original investigation (Bowser et al. 1991). Their efforts have been made as well and are summarized in Rafferty et al. (2009). Of note, many viruses that induce skin tumors are uncultureable by standard tissue culture methods. It is possible that previous investigations specific to a putative viral etiology for bullhead skin tumors may have been hindered by this characteristic. Additionally, exploration for viruses via electron microscopy is akin to searching for a needle in a haystack especially if virus titer is low. Nucleic acid-based techniques are now available that allow sequence independent amplification and screening of transcriptomes and genomes making discovery of novel genomes (viral, prokaryotic and eukaryotic) possible. Techniques developed for the specific purpose of novel virus identification are also available. (Hanson et al. 2006, Biagini et al. 2007, Nanda et al 2008). Additionally, the discovery of viruses has been enhanced with Next Generation sequencing technologies (Løvoll et al. 2010, Daly et al. 2011).

Methods:

Sample Collection – During late May 2010, brown bullheads were collected from Sarah's Cove and Lagoons. Fish were transported to the National Fish Health Laboratory, Kearneysville, WV. Upon arrival all fish were either moribund or dead. Live fish were euthanized with a lethal dose of MS-222 and skin tumors were be excised using a sharp scalpel. Tissues were then transferred to RNA Later and stored for molecular analyses. June 2011, twelve additional bullheads were captured around Presque Isle Bay, PA. Lip tumors were removed, placed into vials, and frozen at -80 C. Frozen vials were then shipped to the National Fish Health Laboratory, Kearneysville, WV where they were stored at -80 C until extraction. These latter samples were used exclusively for the 454 pyrosequencing.

In addition to tumors from bullheads collected in Pennsylvania, early stage orocutaneous neoplasms lesions were procured from an ongoing study in the South River of the Chesapeake Bay watershed. These samples were included in the pyrosequencing sample as well. Historic samples of walleye skin tumors infected with walleye dermal sarcoma virus (WDSV-1) were kindly provided by Dr. Paul Bowser (Cornell University) to serve as a positive control for the PEER and DNA based methods.

Sample processing – DNA and RNA were extracted from normal tissue and overt tumors using the DNeasy Tissue Kit (Qiagen) or Total RNA Kit I (Omega Bio Tek) nucleic acid purification kits respectively. RNA samples from bullheads and walleye were reverse transcribed into cDNA for the subsequent primer-extensionenrichment-reaction (PEER) method (Biagani et al 2007). Total RNA was analyzed for quality/ degradation using an Agilent 2100 Bioanalyzer. These methods have been modified in our lab, and have facilitated the successful identification of a fish Herpesvirus (channel catfish virus) and amphibian Iridovirus (frog virus-3) grown in tissue culture and in host tissue (Figure 1).

Quality Control/ Verification of WDSV-1 infection- In order to verify that control walleye skin was negative for WDSV-1 and that intact viral nucleic acid was present in the tumor tissue, a simple RT-PCR was conducted. Genomic DNA was used as template from the skin as this represents the available nucleic acids in the driver for the PEERmod. Template from the tumor was cDNA. Both templates were amplified using the primer pair WDSV-1 P3 and WDSV-1 P4 which target a 343 bp amplicon of the WDSV-1 genome (Table 1; Poulet et al. 1996).

Figure 1. PEER amplification profile obtained either directly from tissue or BF2 cell culture supernatant inoculated with cell free extract from infected tissues. Final PCR results using A4/PT7 or A4/PT8 primers are shown. M: molecular weight markers. T1: negative control. T2: tumor sample taken from a frozen brown bullhead barbel. T3: tumor sample taken from a frozen brown bullhead barbel. T4: tumor tissue sample taken from a brown bullhead barbel preserved in RNAlater. T5: Unknown sample taken from the coelomic tissue of leopard frogs (*Rana pipiens*). T6: positive control Ranavirus isolate grown on BF2 cells initially inoculated with cell free extract from the American toad (*Bufo americanus*). T7: Known channel catfish virus isolate grown on BF2 cells initially inoculated with cell free extract from brown bullhead.

Amplification conditions were 95 °C for 5 minute for initial denaturation followed by 95 °C for 1 minute, 45 °C for 30 sec and 72 °C for 30 sec for 30 cycles. Extension of the amplicons was completed at 72 °C for 5 minutes, and the final products were chilled to 10 °C. Products were resolved in 1.2% agarose electrophoresis.

PEER - Extracted DNA (18ul) from above was mixed with 2.5 μL 10x buffer, 1.0 μL 10mM dNTP solution, and 2.0 μL of each forward and reverse primer at 10 pmol. One *driver* (DNA from control tissue) and two *testers* (cDNA and DNA each from tumors) were then processed using 10 pmol of different primers (Table 1). Samples were incubated at 94°C for 2 min and on ice for 2 min. Then2.5 units of 3'-5' exo-Klenow DNA polymerase (New England Biolabs, Ipswich, MA) was added and the samples were incubated at 37 °C for 1 h. This denaturation-annealing-elongation cycle was repeated and then enzymes were heat inactivated at 75 °C for 10 min. The protocol was then continued as described by Biagini et al. (2007).

PEERmod – A modified version of the protocol was tested using only genomic DNA as a driver. This approach in theory would allow for the detection of unique genomic DNA or expressed transcripts between the samples.

Primer	Sequence
Name	
Driver	
PDSMART	AAGCAGTGGTAACAACGCAGAGTACGCGGG
PDON7	AAGCAGTGGTAACAACGCAGAGTAIIIIIII
Tester	
PT1G	ACACTCGAGGAGGTCTGGAGGGG
PT1N7	ACACTCGAGGAGGTCTGGAGIIIIIII
Tester II	
PT8G	AAGCAGAGGCAGCATTGGAGGG
PT7N7	GAGCTGTGGTGAGTTGGTTGGAAIIIIIII
Universal	
SP6	TATTTAGGTGACACTATAG
Τ7	TAATACGACTCACTATAGGG
WDSV-1 P3	TGAAGCAGGAATACCTACCT
WDSV-1 P4	CTGTAAGTCCGTTCTCTTGT
Cons Lower	cccgaattcagatcTCNGTRTCNCCRTA
Adeno	gggaattctaGAYATHTGYGGNATGTAYGC
HV	cggaattctaGAYTTYGCNWSNYTNTAYCC
I = Inosine	

Table 1. Primer sequences

PEER products were then cloned into the pCR-XL-TOPO vector (Invitrogen) and transfected into Mach1-T1 chemically competent E. coli. Colonies were expanded in S.O.C medium and plated onto LB agar containing 50ug/ ml of kanamycin. The resulting clones were PCR amplified using M13 primers provided with the TOPO-XL cloning kit to verify the presence of inserts.

PEERmod products were cloned using a pGEM-T Easy Vector kit (Promega). Positive clones were amplified with SP6 and T7 primers. Clones were then heat lysed and plasmid DNA was harvested for direct sequencing. Sequences were identified via nucleotide blast (Blastn) or Blastx searches to the NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Large DNA virus PCR – A number of tumorogenic viruses contain a large DNA genome. Hanson et al. (2006) developed a method that allows for the amplification of such genomes using degenerate primer sets that target the highly conserved DNA polymerase gene. Extracted DNA from pooled brown bullhead skin tumors were amplified with the primer pairs Cons Lower and Adeno, or Cons Lower and HV. Primer sequences are listed in Table 1. PCR was conducted in a Rotor-Gene Q using GoTaq qPCR mastermix. PCR used the appropriate forward primer and the consensus reverse primer (Table 1). The reaction conditions were: 93°C, 1 min for one cycle followed by 93°C, 30 sec; 45°C, 2 min; 72°C 3 min for 35 cycles followed by a single cycle at 72°C for 4 min. Product was evaluated by electrophoresis on 1.5% agarose gels. Products were cloned into the using the PGEM cloning kit as described above.

Pyrosequencing – Total RNA was extracted following manufacturer's instructions using the E.Z.N.A.[™] Total RNA Kit I (Omega Bio-tek, Norcross, GA), from 17 specimens: five brown bullhead lip tumors excised from fish collected from the South River in Maryland (September 2011) and 12 samples from orocutaneous tumors of bullheads inhabiting locations within Presque Isle Bay, PA (June 2011). Total RNA was quantified and analyzed for RNA integrity with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). This analysis identified extensive degradation of sample RNA from the Presque Isle Bay samples (Figure 2). As a result on the 3 best samples from Presque Isle Bay were pooled with the high quality samples from the MD collections. Total RNA samples from 8 fish were pooled at equimolar concentrations for downstream processing.

Ribosomal RNA was removed from total RNA using a RiboZero rRNA Removal Kit (Human/Mouse/Rat; Epicenter) according to manufacturer instructions. A cDNA rapid library was then prepared for the GS Junior Titanium Series (June 2010 Rev) using manufacture protocols. The resulting sequences were imported into CLC Workbench for assembly. Blastn and blastx searchers were then conducted against NCBI nt and nr databases. Filters for the keywords 'virus', 'oncogene', and 'interferon' to sort through the lowest e-value gene descriptions.

Results and Discussion

Quality Control

Analysis of extracted RNA from bullhead and walleye tumors (not shown) revealed low RNA quality. This was apparent by the absence of clear 18S and 28S rRNA peaks and an accumulation of small fragments in the Bioanalyzer trace and low RIN values

(Figure 2). Given that these were the only available samples, however, we continued with the virus discovery analysis as proposed.

Amplification of WDSV-1 was successful from the cDNA synthesized from the tumor samples. A weak band of the appropriate size was amplified from control DNA however (Figure 3). This indicates that WDSV-1 had integrated into the host DNA of the control fish, or that some viral replication was in progress in the absence of a tumor. As a result, the negative control was deemed inadequate for the PEER method.

PEER

- The PEER generated less than 20 clones for bullhead samples. None of the inserts yielded sequence with homology to viruses in the NCBI database.
- Approximately 100 clones resulted from the PEER for the walleye samples. Similar to the results for the bullhead, none of the sequenced inserts shared homology to viruses in the NCBI database.

PEERmod

- The PEERmod generated approximately 100 clones for bullhead samples.
 None of the inserts yielded sequence with homology to viruses in the NCBI database.
- Approximately 300 clones resulted from the PEER for the walleye samples. Similar to the results for the bullhead, none of the sequenced inserts shared homology to viruses in the NCBI database.

Large DNA virus PCR

- Amplification of DNA extracted from brown bullhead skin tumors with the degenerate DNA polymerase resulted in numerous amplicons (Figure 4).
- None of these amplicons had similar homology to viruses in the NCBI database. Interestingly three brown bullhead genes were identified and included 1) toll-like receptor 3, Immunoglobulin heavy chain and the NOD1 receptor.

Pyrosequencing - Roche 454 Jr.

The pyrosequencing yielded a total of 98,997 reads with a mean length of 330 bases. Summary statistics and a summary mapping report are contained in Appendix 1. The assembly of these sequences led to the computational construction of 10,093 contigs. Singleton sequences that were not assembled into contigs were represented by 30,329 sequences with a mean length of 310 bases. Approximately 10% of the contigs represented ribosomal RNA suggesting that the mRNA enrichment step was successful. These contigs and raw sequence reads will be deposited into the publicly searchable Sequence Read Archive

(http://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=announcement) maintained by National Center for Biotechnology Information (NCBI) or other depository (Wheeler et al. 2008). While definitive viral sequences were not identified a number of gene transcripts associated with cellular responses to viral infection were observed (Table 2). Additionally a number of oncogene and transcripts commonly associated with tumors were observed (Table 3). A complete list of putative gene IDs for all contigs are included in Appendix 2.

Query	Lowest E-value	Accession (E-value)	Putative ID
Ameiurus_contig_779	0	DQ353791	Interferon gamma inducible protein 30
Ameiurus_contig_7504	1.45 ⁻¹³⁷	NM_001200299	Interferon 2
Ameiurus_contig_1273	7.21 ⁻⁹⁰	FM864346	Interferon gamma2
Ameiurus_contig_6581	2.14 ⁻⁸¹	AM887792	Virus induced TRIM protein (finTRIM gene)
Ameiurus_contig_9431	9.01 ⁻⁷²	NM_001200167	Interferon induced protein 2
Ameiurus_contig_8852	9.56 ⁻⁵³	XM_678994	Interferon-induced very large GTPase 1-like
Ameiurus_contig_2346	2.27 ⁻⁴⁹	AM887792	Virus induced TRIM protein (finTRIM gene)
Ameiurus_contig_5240	9.73 ⁻⁴⁸	AM887815	Virus induced TRIM protein (finTRIM gene)
Ameiurus_contig_1454	1.17 ⁻⁴²	AM887805	Virus induced TRIM protein (finTRIM gene)
Ameiurus_contig_511	9.44 ⁻⁴¹	NM_001008614	Interferon regulatory factor 2
Ameiurus_contig_6758	1.31 ⁻³⁹	XM_693658	FinTRIM family, member 7 (ftr07)
Ameiurus_contig_5561	1.01 ⁻³⁷	NM_001008614	Interferon regulatory factor 2
Ameiurus_contig_5385	5.54 ⁻²⁷	XM_002660912	FinTRIM family, member 23 (ftr23)
Ameiurus_contig_8993	8.51 ⁻²¹	XM_003446312	Interferon-induced very large GTPase 1-like
Ameiurus_contig_160	2.73 ⁻¹⁹	XM_003197983	FinTRIM family, member 65 (ftr65)
Ameiurus_contig_4516	1.51 ⁻¹⁸	FM864346	Interferon gamma2
Ameiurus_contig_9992	1.82 ⁻¹⁴	XM_678994	Interferon-induced very large GTPase 1-like
Ameiurus_contig_7293	6.62 ⁻¹¹	CR545476	Similar to vertebrate tripartite motif-containing 54
Ameiurus_contig_1818	3.45 ⁻¹¹	DQ353791	Interferon gamma inducible protein 30
Ameiurus_contig_3343	3.015 ⁻¹⁰	XM_678037	Interferon-induced, hepatitis C-associated microtubular aggregate
Ameiurus_contig_8937	5.88-09	BX465210	Novel protein similar to interferon gamma 1
Ameiurus_contig_2367	3.49 ⁻⁰⁸	XM_003451121	E3 ubiquitin/ISG15 ligase TRIM25-like
Ameiurus_contig_7598	1.64 ⁻⁰⁸	XM_003460109	Interferon-induced very large GTPase 1-like
Ameiurus_contig_9581	4.47 ⁻⁰⁶	GU725006	Interferon-inducible 58 kDa protein
Ameiurus_contig_1538	8.83-05	XM 003199710	E3 ubiquitin-protein ligase TRIM8-like

Table 2a. Host genes commonly associated with viral infection (Only those with an E-value > than 1×10^{-5} are reported). Putative ID based on Blastn.

Query	Lowest E-value	Accession (E-value)	Putative ID
Amieurus_contig_6477	9.00 ⁻⁹⁹	NP_001187103	Interferon-induced GTP-binding protein Mx1
Amieurus_contig_9564	7.55 ⁻⁸⁶	CAP08949	Fish virus induced TRIM protein
Amieurus_contig_779	1.6 ⁻⁷⁹	NP_001006057	Interferon gamma inducible protein 30
Amieurus_contig_1538	6.02 ⁻⁶⁹	XP_003199758	Probable E3 ubiquitin-protein ligase TRIM8-like
Amieurus_contig_5240	3.65 ⁻⁶⁵	CAP08948	Fish virus induced TRIM protein
Amieurus_contig_8852	2.27^{-61}	XP_684086	Interferon-induced very large GTPase 1-like
Amieurus_contig_7790	2.78^{-59}	CBN80878	Tripartite motif-containing protein 62
Amieurus_contig_6581	4.34-57	ACO13467	Tripartite motif-containing protein 25
Amieurus_contig_8993	1.21^{-56}	XP_684086	Interferon-induced very large GTPase 1-like
Amieurus_contig_5258	1.34 ⁻⁵⁴	AAP49829	Interferon-inducible protein Gig2
Amieurus_contig_4073	9.49 ⁻⁵³	CAP08949	Fish virus induced TRIM protein
Amieurus_contig_9581	9.81 ⁻⁵²	AAP42145	Interferon-inducible protein IFI58
Amieurus_contig_9805	8.18 ⁻⁴⁹	CAP08959	Fish virus induced TRIM protein
Amieurus_contig_7345	5.93 ⁻⁴⁸	XP_001346132	Interferon-induced very large GTPase 1-like
Amieurus_contig_5313	7.24 ⁻⁴⁵	NP_001002870	Trim24 protein
Amieurus_contig_3893	2.7 ⁻⁴⁴	NP_001038633	Novel protein similar to vertebrate tripartite motif
Amieurus_contig_5385	4.06 ⁻⁴³	NP_001038735	finTRIM family, member 14
Amieurus_contig_160	2.85^{-40}	NP_001038735	finTRIM family, member 14
Amieurus_contig_3988	8.33-40	CAQ14367	finTRIM family protein
Amieurus_contig_3512	1.84 ⁻³⁹	XP_003198092	Interferon-induced very large GTPase 1
Amieurus_contig_9554	3.55-38	NP_001187103	Interferon-induced GTP-binding protein Mx1
Amieurus_contig_7504	2.61-37	NP_001187228	Interferon 2
Amieurus_contig_158	2.63 ⁻³⁷	NP_001038735	finTRIM family, member 14
Amieurus_contig_7598	1.64^{-36}	XP_684086	Interferon-induced very large GTPase 1-like
Amieurus_contig_4457	2.16 ⁻³⁵	XP_003201305	E3 ubiquitin-protein ligase TRIM21
Amieurus_contig_2346	6.4 ⁻³²	CAP08960	Fish virus induced TRIM protein
Amieurus_contig_3488	3.23 ⁻³¹	AAP49828	Interferon-inducible protein Gig1
Amieurus_contig_3791	9.3 ⁻³¹	CAQ14367	finTRIM family protein
Amieurus_contig_1358	3.84 ⁻²⁹	CAP08960	Fish virus induced TRIM protein
Amieurus_contig_1454	1.29 ⁻²⁵	CAQ14348	finTRIM family protein
Amieurus_contig_6758	5.09 ⁻²¹	CAP08952	Fish virus induced TRIM protein
Amieurus_contig_4562	8.66 ⁻²¹	XP_002939897	Interferon-induced very large GTPase 1-like
Amieurus_contig_2947	4.46 ⁻¹⁷	XP_700104	E3 ubiquitin/ISG15 ligase TRIM25 isoform 3
Amieurus_contig_9992	7.82 ⁻¹⁷	XP_684086	Interferon-induced very large GTPase 1-like
Amieurus_contig_9108	4.3-14	XP_003200077	Tripartite motif-containing protein 39-like
Amieurus_contig_8724	4.76 ⁻¹⁴	XP_003197665	Interferon-induced protein 44-like
Amieurus contig 8825	1.03^{-05}	XP 700104	E3 ubiquitin/ISG15 ligase TRIM25 isoform 3

Table 2b. Host genes commonly associated with viral infection (Only those with an E-value > than $1 \ge 10^{-5}$ are reported). Putative ID based on Blastx.

Table 3a. Oncogenes and tumor associated genes expressed in bullhead orocutaneous tumors (Only thosewith an E-value > than 1 x 10-5 are reported). Putative ID based on Blastn.

Query	Lowest E-value	Accession (E-value)	Putative ID
Ameiurus_contig_6656	0	GU587872	Tumor protein d54 (TPD54)
Ameiurus_contig_7029	0	GU588158	Translationally-controlled tumor protein-like protein
Ameiurus_contig_4375	0	NM_001200465	RAS oncogene (rab3-like)
Ameiurus_contig_3950	1.4 ⁻¹⁷¹	GU588158	Translationally-controlled tumor protein-like protein
Ameiurus_contig_5650	2.32-169	NM_201454	RAS oncogene family (rab2a)
Ameiurus_contig_6100	2.2 ⁻¹⁶⁴	NM_001200076	Tumor protein p53 (tp53)
Ameiurus_contig_6595	3.1-135	NM_001200076	Tumor protein p53 (tp53)
Ameiurus_contig_4609	1.95-135	NM_200928	RAS oncogene family (rab7)
Ameiurus_contig_2634	9.78 ⁻¹³³	AY326792	P55 c-fos oncogene
Ameiurus_contig_5466	3.3-121	BC165809	Tumor protein p63
Ameiurus_contig_5075	1.84 ⁻¹¹⁹	NM_001122705	V-abl Abelson murine leukemia viral oncogene homolog 2
Ameiurus_contig_946	2.01-100	BX005210	Braf gene for v-raf murine sarcoma viral oncogene
Ameiurus_contig_8805	4.84 ⁻⁸⁹	BC062857	RAS oncogene family (rab1a)
Ameiurus_contig_9226	5.67 ⁻⁸⁹	NM_001140089	V-ets erythroblastosis virus E26 oncogene homolog 2
Ameiurus_contig_9252	5.69 ⁻⁸⁹	AY423018	RAS oncogene family (RAP1B)
Ameiurus_contig_5875	1.40 ⁻⁷³	NM_001003449	RAS oncogene family (rab18b)
Ameiurus_contig_7955	2.15 ⁻⁷²	NM_001200574	Receptor-binding cancer antigen expressed on siso cells
Ameiurus_contig_1771	1.4-64	GU588158	Translationally-controlled tumor protein-like protein
Ameiurus_contig_995	6.31-62	NM_201329	RAS oncogene family (rab13)
Ameiurus_contig_1495	6.93 ⁻⁶¹	NM_001004597	Danio rerio disrupted in renal carcinoma 2
Ameiurus_contig_2733	2.18 ⁻⁵⁹	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_4544	7.43 ⁻⁵⁹	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_4467	1.53-58	NM_001002089	Tumor susceptibility gene 101
Ameiurus_contig_6090	1.03-53	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_8562	2.66 ⁻⁵⁰	AF299060	Squamous-cell carcinoma T-cell-recognized antigen
Ameiurus_contig_7638	1.33-45	DQ086208	N-ras oncogene p21 mRNA
Ameiurus_contig_2050	2.55 ⁻⁴⁴	NM_001013270	Yamaguchi sarcoma viral oncogene homolog 1
Ameiurus_contig_1933	8.60 ⁻⁴⁴	NM_001140681	V-ral simian leukemia viral oncogene homolog Bb
Ameiurus_contig_7038	1.25 ⁻⁴¹	NM_001007312	FBJ murine osteosarcoma viral oncogene homolog B
Ameiurus_contig_9284	1.62 ⁻⁴⁰	XM_003444218	Tumor protein 63-like, transcript variant 2
Ameiurus_contig_10081	6.59 ⁻³⁹	NM_199769	Suppression of tumorigenicity 13
Ameiurus_contig_5795	5.3-39	NM_199853	Wilms tumor 1 associated protein (wtap)
Ameiurus_contig_79	1.10-37	XM_003454260	Ski oncogene-like
Ameiurus_contig_5878	1.21-36	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_5689	1.4 ⁻³²	XM_003444217	Tumor protein 63-like, transcript variant 1
Ameiurus_contig_8946	7.66 ⁻²⁶	XM_002666744	Lethal(3)malignant brain tumor-like protein 3-like

Ameiurus_contig_4086	1.21 ⁻²⁵	BX510928	RAS oncogene family
Ameiurus_contig_640	3.32 ⁻²¹	NM_001173687	Suppression of tumorigenicity 5
Ameiurus_contig_3168	2.23-20	NM_201329	RAS oncogene family (rab13)
Ameiurus_contig_5997	6.66 ⁻¹⁸	NM_001002673	Squamous cell carcinoma antigen
Ameiurus_contig_2373	1.91 ⁻¹⁵	NM_001111156	Suppression of tumorigenicity 7 like
Ameiurus_contig_2648	3.53-15	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_1561	5.74 ⁻¹⁴	BC128654	Danio rerio suppression of tumorigenicity 14
Ameiurus_contig_5971	1.07 ⁻¹³	XM_001920023	FAT tumor suppressor homolog 2
Ameiurus_contig_4246	1.45 ⁻¹²	BT075067	Tumor suppressor candidate 2
Ameiurus_contig_3110	6.31 ⁻¹¹	XM_001373285	Leucine zipper, putative tumor suppressor 1 (LZTS1)
Ameiurus_contig_4224	8.21 ⁻¹⁰	BC134114	Danio rerio suppression of tumorigenicity 14
Ameiurus_contig_7905	1 ⁻⁰⁹	XM_002666744	Lethal(3)malignant brain tumor-like protein 3-like
Ameiurus_contig_2949	7.51 ⁻⁰⁸	XM_002662510	Ubiquitin specific protease 4 (proto-oncogene)
Ameiurus_contig_812	6.27 ⁻⁰⁸	NM_001023580	V-ets erythroblastosis virus E26 oncogene homolog 2
Ameiurus_contig_4484	3.97 ⁻⁰⁶	BC163970	Suppression of tumorigenicity 5
Ameiurus_contig_312	6.26 ⁻⁰⁶	NM_199582	Tumor protein D52-like 2b (tpd52l2b)
Ameiurus_contig_2737	4.7 ⁻⁰⁵	XM_001920023	FAT tumor suppressor homolog 2

Table 3b. Oncogenes and tumor associated genes expressed in bullhead orocutaneous tumors (Only those with an E-value > than 1 x 10-5 are reported). Putative ID based on Blastx.

	Lowest E-	Accession	
Query	value	(E-value)	Putative ID
			Similar to v-akt murine thymoma viral oncogene
Amieurus_contig_6475	2.5 ⁻¹¹³	XP_002200623	homolog 1
Amieurus_contig_5650	1.51 ⁻¹⁰⁸	NP_958862	Ras-related protein Rab-2A
Amieurus_contig_2669	2.63 ⁻¹⁰⁸	NP_956417	RAB11a, member RAS oncogene family, like
Amieurus_contig_5466	4.64 ⁻⁹⁴	AAI52688	Tumor protein p63
Amieurus_contig_1495	9.51 ⁻⁹³	NP_001004597	Disrupted in renal carcinoma 2
Amieurus_contig_6871	1.27 ⁻⁹²	NP_001002178	Ras-related protein rab-7-like
Amieurus_contig_4467	2.81 ⁻⁹¹	NP_001002089	Tumor susceptibility gene 101 protein
Amieurus_contig_7029	1.89 ⁻⁹⁰	ADO28114	Translationally-controlled tumor protein-like protein
Amieurus_contig_2787	3.56 ⁻⁸⁶	CAP09309	Jun B proto-oncogene
Amieurus_contig_8551	2.55 ⁻⁸⁵	XP_001510596	Similar to serine/threonine kinase TAO1
Amieurus_contig_7707	5.66 ⁻⁸⁴	NP_001071205	Suppression of tumorigenicity 14
Amieurus_contig_5875	8.23-80	NP_001003449	Ras-related protein Rab-18-B
Amieurus_contig_2518	1.21 ⁻⁷⁵	NP_001118094	Transcription factor Myc
Amieurus_contig_6100	6.40 ⁻⁶⁴	NP_001187005	Cellular tumor antigen p53
Amieurus_contig_8562	1.18 ⁻⁶²	AAG28762	Squamous-cell carcinoma T-cell-recognized antigen
Amieurus_contig_675	9.84 ⁻⁶²	NP_956021	Similar to human tumor differentially expressed 1
Amieurus_contig_6656	1.73 ⁻⁶⁰	ADO27830	Tumor protein d54
Amieurus_contig_570	7.97 ⁻⁵⁹	AAI52688	Tumor protein p63
Amieurus_contig_995	4.18 ⁻⁵⁶	NP_958486	Ras-related protein Rab-13
Amieurus_contig_1551	4.53 ⁻⁵⁴	NP_571882	Bcl21 protein
Amieurus_contig_7793	1.42 ⁻⁵¹	NP_001187995	Tumor susceptibility gene 101 protein

Amieurus_contig_8946	1.62 ⁻⁵¹	XP_002666790	Lethal(3)malignant brain tumor-like protein 3-like
Amieurus_contig_2610	1.65 ⁻⁵⁰	ACR83585	Jun B proto-oncogene
Amieurus_contig_7860	1.08-47	NP_001003628	Adapter molecule crk
Amieurus_contig_1926	1.12-47	NP_001025294	Nucleoprotein TPR
Amieurus_contig_8754	6.49 ⁻⁴⁷	XP_001510596	Similar to serine/threonine kinase TAO1
Amieurus_contig_5902	8.31-47	CAN88705	Suppression of tumorigenicity 14
Amieurus_contig_9888	9.38 ⁻⁴⁴	AAI63200	Bone morphogenetic protein receptor, type II b
Amieurus_contig_9932	2.35 ⁻⁴²	NP_998621	Serine/threonine-protein kinase 38
Amieurus_contig_7905	1.32-40	XP_003204259	Lethal(3)malignant brain tumor-like protein 3-like
Amieurus_contig_6923	8.05 ⁻⁴⁰	NP_997915	Jun B proto-oncogene, like
Amieurus_contig_9284	1.00-38	AAI52688	Tumor protein p63
Amieurus_contig_9758	8.87 ⁻³⁸	NP_955966	Serine/threonine-protein kinase 3
			Novel protein similar to vertebrate FBJ murine
Amieurus_contig_7038	8.00 ^{E-38}	CAK04207	osteosarcoma viral oncogene homolog B
Amieurus_contig_2050	1.47 ⁻³⁶	NP_001013288	V-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
Amieurus_contig_123	1.55-33	CAQ14160	MAP kinase-interacting serine/threonine kinase 2
Amieurus_contig_236	6.31 ⁻³²	CAQ15160	Tumor protein p73
Amieurus_contig_4224	9.84 ⁻³²	XP_001112126	Suppressor of tumorigenicity 14 protein-like
			V-erb-b2 erythroblastic leukemia viral oncogene
Amieurus_contig_8746	5.23-31	NP_001122291	homolog 3b
Amieurus_contig_8127	1.79-30	NP_001186798	Feline sarcoma oncogene
A · · · 10/0	4 < 1-30	CA3/101/4	Novel protein similar to vertebrate translocated promoter
Amieurus_contig_1969	4.61	CAX13164	
Amieurus_contig_23/3	2.31	CBN80808	Suppressor of tumorigenicity protein / homolog
Amieurus_contig_8453	1.48 20	NP_001116177	Tyrosine-protein kinase ABL2
Amieurus_contig_122	1.17-25	CAQ14160	MAP kinase-interacting serine/threonine kinase 2
Amieurus_contig_3110	2.01-23	XP_697750	Leucine zipper putative tumor suppressor 1
Amieurus_contig_6595	3.01-24	NP_001187005	Cellular tumor antigen p53
Amieurus_contig_742	6.07 ⁻²⁴	NP_001167158	Suppression of tumorigenicity 5 protein
Amieurus_contig_5997	2.06 ⁻²³	NP_001002673	Squamous cell carcinoma antigen recognized by T cells
Amieurus_contig_1561	2.41 ⁻²³	CAN88704	Suppression of tumorigenicity 14
Amieurus_contig_9705	9.29 ⁻²³	NP_937789	RAC-beta serine/threonine-protein kinase
Amieurus_contig_966	8.05 ⁻²¹	NP_001164290	Fas-activated serine/threonine kinase
Amieurus contig 3354	2.50 ⁻²⁰	NP 956063	Suppression of tumorigenicity 13

Discussion

Here a number of molecular biology techniques were exploited in an attempt to identify the presence of putative viral nucleic acids associated with orocutaneous tumors of the brown bullhead. At the conception of this work Next Generation Sequencing (NGS) was a cost prohibitive option; however, given the rapid development of this technology, a single run of pooled samples became a cost efficient option. While the PEER method has been a useful approach to identify unknown viruses, it is simply no longer cost/ time effective to sequence hundreds to thousands of clones via Sanger sequencing. However, adaptation could be made to hybridize these approaches. The 454 pyrosequencing platform allowed for the tentative identification of over 10K genes (with some redundancy), and over 30K non-overlapping sequence directly from tumor tissue without *a priori* knowledge of brown bullhead gene sequences. Given the vast sequence data generated by the 454 pyrosequencing the following will focus exclusively on these results.

Here, unequivocal viral nucleic acid was not identified. A few transcripts identified did share sequence homology with an RNA-dependent DNA polymerase and proteins associated with herpeseviruses based on lowest assigned E-values from Blastx searches of the NCBI non-redundant protein database. Based on a more comprehensive examination of the Blast results, the RNA-dependent DNA polymerase is more likely a vertebrate reverse transcriptase. The only predicted herpesvirus protein with an E-value greater than $1*10^{-4}$ also shared high homology to a hemagglutination activity domain protein not commonly observed in vertebrates. Results from the Blastn search, however, lend stronger support (Evalue = $1.65*10^{-36}$) for the identity of this sequence as a noncoding region transcript for an inhibitor of apoptosis gene.

While definitive viral nucleic acids were not identified in the current discovery screening, a number of host gene transcripts commonly associated with virus infection were detected (Table 2). These included Interferon- γ , interferon inducible genes and a number of fish tripartite motif- containing (finTRIM) proteins. Interferon- γ is best recognized as an inducible gene associated with host defense to viral infection and inflammation (Farrar and Schreiber 1993). In some tissues, however, it is sometime expressed in response to disease status such as chronic liver disease (Nagao et al 2000). It is typically not expressed in tumors, but is commonly used as an anti-tumor chemotherapeutic agent. While many of the finTRIM proteins are up-regulated in response to viral infection, many are constitutively expressed (van der Aa et al 2012). Thus, while expression of these transcripts is not a specific biomarker of viral infection, the presence of such transcripts does add to the weight of evidence supporting a virally induced tumor. However, their presence could simply reflect inflammation that is commonly associated with necrotic tumors. Histology was not conducted to verify tumor type or identify inflammation given that these were frozen tissue samples.

Perhaps the most interesting observation in the current investigation was the identification of a number of oncogenes, tumor suppressor genes and those associated with cancer. They are present in many tumor causing viruses, but they are also present in the vertebrate genome. Many of these genes are constitutively expressed and are involved in general cell maintenance and application, and are therefore associated with tumors following mutagenic events or oncogenic viral infection. The development of neoplasia is a complex process and is simply the result of a disrupted homeostatic balance of cell growth and cell death. An oncogene is a gene that has potential to cause cancer. The sequencing of tumors genomes and transcriptomes is now common practice in human medicine (Levin et al. 2009, Morrissy et al 2009, Nicholas et al. 2011). The Cancer Genome Project (http://www.sanger.ac.uk/genetics/CGP/Census/) has identified over 450 genes commonly associated with human cancers implicated via mutation in cancer. A list of these genes is included in Appendix 3. Of these, approximately 90% have somatic mutations in cancer, 20% bear germ line mutations that predispose to cancer and 10% show both somatic and germ line mutations. (Futreal et al. 2004). Homologues of many of these genes were identified in the current discovery transcriptome project. While the complete genome of a normal individual is not known, it may be possible to compare transcriptomes of individual fish to identify such mutations in expressed genes. This would facilitate the converse approach of identifying a viral cause and rule in or discount the possibility of chemically induced tumors.

At the present time an unequivocal viral nucleic acid has not been identified in brown bullhead orocutaneous tumors. Failure to identify a microbial agent, however, does not confirm that these skin tumors are not virally induced; however, there is no evidence to support that viruses are the causative agent. As mentioned above this sequencing strategy was confined to a number of assumptions. Also, there were concerns with the quality of orocutaneous tumor tissue. The low RNA integrity values observed during the quality control process indicated significant RNA degradation. As a result viral RNA transcripts may have been degraded if present. It is not clear if the poor tissue quality was an artifact of sample preservation or the intrinsic condition of the neoplastic tissue. Parallel histopathology was not conducted on these tissues. The high quality samples included in this work were from of orocutaneous swellings (confirmation as neoplastic is pending) from bullheads collected in the South River of the Chesapeake Bay watershed. Thus these findings, or lack thereof, do not necessarily represent bullhead skin tumors of bullhead from the Great Lakes. Also, fresh, high quality samples would likely increase the chances of identifying a microbial agent if one is present. Additionally, virally induced tumors are typically seasonal in occurrence (Getchell et al. 1998). Sampling bullhead skin tumors from fish collected during multiple seasons may increase the likelihood of capturing the window of peak viral replication. Without accounting for such possible temporal differences, the confidence that a virus is not associated is lessened.

The strategy employed here is not without limitations. The major assumption was that if a virus was present that it was in a replicative phase and that RNA transcripts would be present. Our strategy would not identify the presence of DNA viruses that were not replicating. This approach also would not identify viral nucleic acid integrated into the host genome (a hallmark mechanism of retroviral and herpesvirus biology) unless there was active transcription of those genes. Additionally, we would unlikely identify low copy numbers of non-replicating RNA viruses given that a normalization of total transcripts was not performed. It must also be noted that viruses are usually not complete carcinogens and many years may pass before the manifestation of a tumor. Likewise, depending on the virus, replication does not always occur in tumor cells and the genome is infrequently retained (Butel 2000). To our knowledge this is the first time high-throughput NGS has been used to investigate the transcriptome of orocutaneous lesions in the brown bullhead. This work has identified a number of putative markers of viral infection and tumorogenesis. More broadly, it has identified over 10K nucleotide sequences that can be used to develop tumor markers or evaluate gene expression in future studies. Given the possibility that gene mutations are an underlying reason for the tumors, this database can be more exhaustively screened for mutations that may lead to protein coding changes. It will also serve as a reference for comparative mutation research. The current sequencing strategy employed here was devised as a simple discovery tool. More quantitative methods (i.e. qPCR) and larger sample sizes will be necessary to document validate tumor biomarker genes. For instance, the overexpression of serine/threonine kinases is associated with tumors. Tumor suppressor genes proteins are well established targets of inactivation for DNA viruses. Moreover, chemically induced mutations in these genes could result in dysregulated cell proliferation and growth.

Given that viruses were not identified here, it is prudent to continue the assumption that contaminant exposure or a genetic predisposition is the cause of these tumors. This possibility of a multi-step combination of virus and contaminant also would not be unprecedented. A classic example is that of the cottontail rabbit papilloma virus. In short, when virus-induced papillomas were treated with coal tar a high percentage of the papillomas converted to carcinomas (Howley and Munger 1999). If indeed these lesions are the result of a transforming virus that integrates into the host genome a more labor intensive full genome sequencing approach may be necessary to confirm viral transformation.

Acknowledgements

We would like to thank Sean Rafferty and Jim Grazio for providing fish for this work. We are also grateful to Fred Pinkney of the US Fish & Wildlife Service for providing lesions from brown bullheads from the South River. We would also like to thank Tim King for the use of his sequencing laboratory and analytical software, and Barb Lubinski for her technical assistance.

References

- Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A and Andersson B. 2005. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proceedings of the National Academy of Sciences 102: 12891-12896.
- Baumann PC and Harshbarger JC. 1995. Decline in liver neoplasms in wild brown bullhead catfish after coking plant closes and environmental PAHs plummet. Environ Health Perspect **103**: 168–170.
- Biagini P, de Lamballerie X and de Micco P. 2007. Effective detection of highly divergent viral genomes in infected cell lines using a new subtraction strategy (primer extension enrichment reaction PEER). J Virol Meth 139: 106-110.
- Black JJ Fox H, Black P and Bock F. 1985. Carcinogenic effects of river sediment extracts in fish and mice. In: Jolley, R.L., R.J. Bull, W.P. Davis, S. Katz, M.H. Roberts, Jr. and V.A. Jacobs (eds). Water Chlorination: Chemistry, Environmental Impact and Health Effects, Vol. 5. Lewis Publishers, Boca Raton, FL, **pp**. 415-428.
- Black JJ and Baumann PC. 1991. Carcinogenesis and cancers in freshwater fishes. Environ Health Perspect **90**: 27-33.
- Blazer VS, Rafferty SD, Baumann PC, Smith SB and Obert EC. 2009a. Assessment of the "fish tumor or other deformities" beneficial use impairment in brown bullhead (*Ameiurus nebulosus*): I. Orocutaneous tumors. J Great Lakes Res 35: 517-526.
- Blazer VS, Rafferty SD, Baumann PC, Smith SB and Obert EC. 2009b. Assessment of the "fish tumor or other deformities" beneficial use impairment in brown bullhead (*Ameiurus nebulosus*): II. Liver neoplasia. J Great Lakes Res 35: 527-537.
- Bowser PR, Wolfe MJ, Reimer J and Shane BS. 1991. Epizootic Epizootic papillomas in brown bullheads *Ictalurus nebulosus* from Silver Stream Reservoir, New York. Dis Aquat Org **11**: 117–27l.
- Butel JS. 2000. Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis **21**: 405-426.
- Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, VanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai JH, Cui LW, Hutchison SK, Simons JF, Egholm M, Pettis

JS and Lipkin WI. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. *Science* **318**: 283–287.

- Daly GM, Bexfield N, Heaney J, Stubbs S, Mayer AP, Palser A, Kellam P, Drou N, Caccamo M, Tiley L, Alexander GJM, Bernal W and Heeney JL. 2011. A Viral Discovery Methodology for Clinical Biopsy Samples Utilising Massively Parallel Next Generation Sequencing. PLOS One **6**: e28879
- Edwards MR and Samsonoff WA. 1977. Electron microscopic observations of viruslike particles of a catfish papilloma. Proc A Meet Electron Microsc Soc Am **35**: 394-395.
- Farrar MA and Schreiber RD. 1993. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol **11**: 571-611.
- Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N and Stratton MR. 2004. A census of human cancer genes. Nature Reviews Cancer 4: 177-183.
- Getchell, RG, Casey JW and Bowser PR. 1998. Seasonal occurrence of virally induced skin tumors in wild fish. J Aquat Ani Health **10**: 191-201.
- Gray JP, Leas TL, Obert E, Brown D, Clark GC and Vanden Heuvel JP. 2003. Evidence of arylhydrocarbon receptor ligands in Presque Isle Bay of Lake Erie. Aquat Toxicol **64**: 343-358.
- Grizzle JM, Schwedler TE and Scott AL. 1981. Papillomas of black bullheads, *Ictalurus melas* (Rafinesque) living in a chlorinated sewage pond. J Fish Dis **4**: 345-351.
- Hanson LA, Rudis MR, Vasquez-Lee M and Montgomery RD. 2006. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol J **3**: 28-38.
- Harshbarger JC and Clark JB. 1990. Epizootiology of neoplasms in bony fish of North America. Sci Total Environ **1**: 1–32.
- Howley PM and K Munger. 1999. Human papilloma viruses and squamous cell carcinomas. In Parsoneete, J. (ed) Microbes and Malignancy: Infection as a cause of Human Cancers. Oxford Press, Oxford, UK. **pp** 157-179.
- Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, Nusbaum C, Garraway LA and Gnirke A. 2009. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol **10**: R115.

- Løvoll M, Wiik-Nielsen J, Grove S, Wiik-Nielsen CR, Kristoffersen AB, Faller R, Poppe T, Jung J, Pedamallu CS, Nederbragt AJ, Meyerson M, Rimstad E, Tengs T. 2010. A novel totivirus and piscine reovirus (PRV) in Atlantic salmon (*Salmo salar*) with cardiomyopathy syndrome (CMS). Virol J 7: 309.
- Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M and Marra MA. 2009. Next-generation tag sequencing for cancer gene expression profiling. Genome Res **19**: 1825-35.
- Nagao M, Nakajima Y, Kanehiro H, Hisanaga M, Aomatsu Y, Ko S, Tatekawa Y, Ikeda N, Kanokogi H, Urizono Y, Kobayashi T, Shibaji T, Kanamura T, Ogawa S, Nakano H. 2000. The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepat 32: 491-500.
- Nakamura S, Yang CS, Sakon N, Ueda M, Tougan T, Yamashita A, Goto N, Takahashi K, Yasunaga T, Ikuta K, Mizutani T, Okamoto Y., Tagami M, Morita R, Maeda N, Kawai J, Hayashizaki Y, Nagai Y, Horii T, Iida T and Nakaya T. 2009. Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. *PLoS ONE*, **4**: e4219.
- Nanda S, Jayan G, Voulgaropoulou F, Sierra-Honigmann AM, Uhlenhaut C, McWatters BJP and Patel A. 2008. Universal virus detection by degenerateoligonucleotide primed polymerase chain reaction of purified viral nucleic acids. J Virol Methods **152**: 18-24.
- Nicholas Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J and Wigler M. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472: 90–94.
- Pinkney AE, Harshbarger JC, May EB and Melancon MJ. 2001. Tumor prevalence and biomarkers of exposure in brown bullheads (*Ameiurus nebulosus*) from the tidal Potomac River, USA, watershed. Environ Toxicol Chem **20**: 1196-1205.
- Pinkney AE, Harshbarger JC, Karouna-Renier NK, Jenko K, Balk L, Skarphéðinsdóttir H, Liewenborg B and Rutter MA. 2012. Tumor prevalence and biomarkers of genotoxicity in brown bullhead (*Ameiurus nebulosus*) in Chesapeake Bay tributaries. *Sci Tot Environ*, 410–411: pp 248-257.
- Rafferty SD, Blazer VS, Pinkney AE, Grazio JL, Obert EC and LoriBoughton L. 2009. A Historical Perspective on the "Fish Tumors or Other Deformities" Beneficial Use Impairment at Great Lakes Areas of Concern. Journal of Great Lakes Research **35**: 496-506.

- Smith IR, Ferguson HW and Hayes MA. 1989. Histopathology and prevalence of epidermal papillomas epidemic in brown bullhead, *Ictalurus nebulosus* (Lesuer) and white sucker, *Catostomus commersoni* (Lacépède) populations from Ontario, Canada. J Fish Dis **12**: 373-388.
- van der Aa LM, Jouneau L, Laplantine E, Bouchez O, Van Kemenade L, Boudinot P. 2012. FinTRIMs, fish virus-inducible proteins with E3 ubiquitin ligase activity. Dev Comp Immunol **36**: 433-41.
- Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB, Glass JI, Andrews-Pfannkoch C, Fadrosh D, Miller CS, Sutton G, Frazier M and Vente, JC. 2008. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. *PLoS ONE*, 3: e1456.
- Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Ostell J, Pruitt KD, Schuler GD, Shumway M, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L and Yaschenko E. 2008. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 36: D13-21.

Appendix 1 (See attached)

Appendix 2 (Electronic file)

Appendix 3 (Electronic file)